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INTRODUCTION

The use of physically small antennas and antenna arrays can produce large benefits,
particularly considering the limited space available on missiles, satellites, and aircraft.
Unfortunately, if the desired operating frequency is low, physically small also means
electrically small. For example, if the operating frequency is around 500 MHz, the
wavelength is 0.6 m, 60 cm, or approximately two feet. On a four-inch diameter missile
it is clear that the largest antenna dimension available is liable to be only a fraction of a
wavelength, i.e. electrically small. A little reading of antenna books and literature
devoted to antenna theory and practice will soon lead to the conclusion that electrically
small antennas present severe problems in terms of efficiency, operating bandwidth,
beam-width, antenna patterns, gain and directivity. Experimental work will quickly
reinforce these conclusions. Nonetheless, the possible variations in antenna and antenna
array design appear infinite, so one can always hope to come up .with the magical
efficient, highly directive, wide bandpass (if that is what is desired) antenna that
somehow “beats the game.”

This need to use electrically small antennas and the problems of implementation have
led to a long continuing effort on finding the theoretical limits on small antenna
performance (References 1 through 11). That this work has continued for so long is,
perhaps, due to the large payoff that could be obtained with at least acceptable
electrically small antennas, and some doubt and confusion as to the universal validity of
the preceding theoretical results. Indeed, Grimes (References 12 through 24) appears to
claim that Q and bandwidth restrictions, arrived at by Wheeler (Reference 2), Chu
(Reference 1), Harrington (Reference 3) and othiers, are much too restrictive and apply
only to certain simple antennas. He asserts that much better performance can be obtained
by using antennas consisting of the proper combination of electric and magnetic
multipoles.

It is not the purpose of this report to determine, once and for all, what are the
performance limits of electrically small antennas. It is rather to lay a solid theoretical
foundation and physical understanding of the radiation and stored energy properties of
antennas needed to find these theoretical limits. This foundation is badly needed
because, while the papers quoted generally deal in some fairly involved mathematics to
prove the particular points of the particular papers, they are not only difficult for the
reader to follow, but all suffer from some lack of careful interpretation of the meanings of
Poynting's theorem, equivalent circuits, and Q. For this purpose a careful derivation of

Poynting's theorem for both the frequency domain [exp(jot)] and the time domain
[cos(ot + $)] forms for the electromagnetic fields is initiated in the next section.
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THE COMPLEX POYNTING'S THEOREM (TIME HARMONIC CASE)

Technical books and papers on electromagnetic theory, at least in modern times,
generally assume electromagnetic fields of the form

E =Egexp(jor) (1a)
H = Hy exp(jox) (1b)

where E and Hy are complex vectors.

However, such complex fields have no physical existence—it could be said that
"Mother Nature," only knows/contains real numbers, not complex or imaginary. Often
electromagnetic texts (References 25 through 36) will note that the use of complex fields

is merely a mathematical convenience and that the actual fields are of sin @t or cos mt
form, and what is meant or understood is actually the real parts of Equations 1a and b.

Breaking E-o and ﬁo into real and imaginary parts,

— I

Eo =Ey - JEo (22)

”

Ho=Hy -jHy (2b)

it is simple to show that

l

§=ReE=_l§0'coswt+Eo’sina)t (3a)

2

#—:Reﬁ:ﬁo'cosa)t-i-ﬁo'sinwt (3b)

It should be noted that £ and # are not physically realizable either, but only in the sense
that they have neither beginning nor ending in time. Otherwise Equations 3aand b are
perfectly general for sinusoidal time dependence of the fields.

For linear problems in electromagnetics, (i.e., problems in which the field quantities

£ and %, or in circuit problems, current and voltage, appear only to the first power) it
generally suffices, and is mathematically simpler, to use the complex or time harmonic
form, work the problem, and, if necessary, take the real part upon completion.
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For nonlinear problems, however, this procedure will lead to erroneous results. For
example, suppose there is a device whose output is proportional to voltage squared, i.e.,

L=kV?,
If the form V ='V_exp(jot) is used, then
L = KV§ exp(j20)

and if the real part is taken, L = KVE)2 cos2at.

On the other hand, if the V = V|, cos @t form is used,

V2 = V@ cos®ax = Vi#(1+ cos2a)/2

so that

L=KV}(1+cos2an)/2

which is clearly not equal to the first result.
Much of the work previously referenced is based, at least in part, on the Poynting

vector and Poynting's theorem. There are two forms of Poynting's vector in general use,
the complex Poynting vector

5. = (ExH%)/2 | (42)

and the time domain Poynting vector

S =Ex# . (4b)

In antenna problems generally, H is proportional to E (and £ to #) so it is clear
that S, and S are proportional to the fields squared and are, in that sense, nonlinear. It

follows that S, should be used and interpreted with caution.

In most physics texts (Reference 25), the time domain Poynting vector is interpreted
as the instantaneous intensity of energy flow at a point in an arbitrary electromagnetic
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field, i.e., the energy per second crossing a unit area whose normal is oriented in the

direction of the vector, £ x #. Correspondingly, the real part of the complex Poynting
vector is interpreted as the mean intensity of the energy flow in a harmonic electro-
magnetic field. :

It is nonetheless true that most antenna texts (References 26 through 36) choose to
work with S, probably for the sake of mathematical simplicity. Doing this has led to

some misinterpretation of Poynting's theorem and its application to antennas. However,
to refresh the reader's memory, Poynting's theorem in complex form is derived first.
(While this derivation can be found in many texts, the steps are important in
understanding what Poynting's theorem does and does not say.)

A useful vector identity is
V.ExH*=H*VxE-E.-VxH* . &)
Maxwell's equations for the time harmonic case are
VxE=—jouH , (6a)
VxH=7J+joE . (6b)

Substituting these into Equation 5 gives

V-E xH*= jo(eE - B*—pH-H*)-E-T* . | ¢
Integrating both sides with respect to volume gives

JV-ExH*dv=jo| (E-E*-pH -H*)dv- [ E-T*adv . (8)
Vv

Equation 8 is clearly a mathematical fact, given Maxwell's equations and the time
harmonic form of the fields, even though that form is not physically realizable. It is
pertinent, however, to ask, "Integrate over what volume?" The answer, of course, is any
volume one may choose. It will usually be reasonable to choose a volume enclosing
the antenna, although Equation 8 is still true even if this is not done. Usually it simplifies
the algebra to use a coordinate system such that the antenna is located at the origin
although that is a convenient, not a necessary choice. Coordinate systems and their
location are the "inventions" of mankind, and one is free to dispose of them as wished
although it is usually preferable to choose them such that can one at least do the algebra.
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Any finite sized antenna, no matter how large physically must, by physical reasoning,
look like a point source if the observer is far enough away. Thus spherical coordinates

-are the natural coordinates for most antenna problems, and a logical volume in most cases

would be a sphere with the antenna at its center.

The next step is to apply the divergence theorem to Equation 8, ending up with
Poynting's theorem for the time harmonic case, i.e.,

(1/2)§ ExH*da =(jo/2)[ (eEE*-pyH - H¥)dv-(1/2)] E-T*dv . (9)
A \% \'%4 .

Equation 9 is essentially, a mathematical identity, given Maxwell's equations and the
assumption of time harmonic fields. However, it is the "almost" any volume for the
volume integration on the right-hand side that causes problems.

The solutions to Maxwell's equations in spherical coordinates are composed of
products of spherical Hankel functions (actually of the first and second kinds), their

derivatives, associated Legendre polynomials, their derivatives, and functions of ¢ in the

forms of exp(jmo), cos m¢, and sin md. These are the spherical harmonic solutions
(Reference 25).

Typically the antenna is considered as a point source at the origin (although it is clear
that actual antennas must have finite extent) and often only spherical Hankel functions of
the second kind are used, which are generally of the form (Reference 25)

M
exp(—jkr) ¥ a,(1/kr)" ,

n=1

whereas the first kind are of the form

M
exp(jkr) X a, *(1/kr)" ,

n=1

on the basis that radiation propagates only outward from the antenna as signified by
exp(-jkr).

If the antenna is not at the origin or is considered to be finite in extent, spherical
Bessel functions would have to be utilized as well, at least inside some sphere containing
the antenna (Reference 35). Regardless, the spherical Hankel functions contain a
singularity, and become infinite at r=0.

The divergence theorem only applies to volumes that contain no singular points
(References 37 and 38). Thus the origin must be excluded from Equation 9 if the
solution is to contain spherical Hankel functions. This can be done by excluding a small
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sphere of radius aj around the origin (any other non-spherical volume around the origin
would presumably suffice but would no doubt greatly complicate the integration process).

Having excluded the origin, and hence the singular point (References 37 and 38), the
surface integral on the left must be performed over the complete surface, where the origin
is surrounded by an arbitrary inner sphere of radius a and an outer sphere of radius a

which is as large as desired. To signify this, Equation 9 is rewritten as

[(1/2)§Exﬁ*-d'5] =(jo/2)| (E-E*-pH -H*)dv—(1/2)] E-T*dv (10)
A v

v
a;,a,

where the subscripts a and a, indicate that the integration must be over the complete
surface including the inner sphere used to exclude the singular point at the origin (see
Figure 1).

7

FIGURE 1. Complex Surface of Integration for the Complex
Poynting Theorem With Actual Antenna Excluded.

There is no particular limit on the size of a, Frequently the current density J at the
antenna is not known and is difficult to solve for. Thus it is common practice to assume a
current density or current on the antenna that is "reasonable," and work from there. An
example is the assumed sinusoidal current distribution on a dipole antenna. For a half
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example is the assumed sinusoidal current distribution on a dipole antenna. For a half
wave dipole using this assumed current distribution, "exact" electromagnetic fields can be
derived (Reference 39). It is shown in Appendix A that these "exact fields" cannot be

correct in the sense that tangential E does not go to zero at the antenna surface, as it
should for a good conductor. Thus there is motive for making aj the radius of the

smallest sphere that will just enclose the antenna. The volume between a and a  then has
T =0, and Equation 10 becomes

{(1/2)]Exﬁ*-d2i] = (jo/2)| (E-E*—puH H*)dv (11)
A 4, Voo

i

in the outer region. This is the situation shown in Figure 1 and will be the case used
generally in the remainder of this report.

Aside from the mathematical convenience of not having to deal with the volume
integral over E-T", there is another, perhaps more cogent reason to exclude the actual
antenna where J exists.

Consider Figure 2. In this case the integration includes the volume of the actual
antenna, V,, where J exists and the fields are given by E; and H;. Exterior to V, in the

sphere of radius a,, is the volume V, with the fields E, and H,. Itis Hyand E, that can
be expressed in terms of the exterlor spherical harmonics and thus have the singularity at

r=0. El, Hl ,and J need have no such singularity and physical argument can be made
that since V, contains the actual antenna, no such singularity exists.

Equation 8 can now be written as

I VE—] Xﬁl*dV'i-J V'szﬁz*dv=jQ)I (SIEI'EI*_ulﬁl'ﬁl *)dV
v, v, y

1

+](DI (SOEZ 'EZ *—ﬂoﬁz 'ﬁz *)dv— I —El J*dv
v, /

which is true without any particular qualification.
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FIGURE 2. Complex Surface of Integration for the
Complex Poynting Theorem With Actual Antenna
Included.

On the other hand, if one tries to work with Equation 9, noting the lack of singularity
so that an inner and an outer sphere need not be considered, one would have

|i§ EzXﬁz * dﬁ] = ]G)I (elﬁl 'El *—,ulﬁl 'ﬁl *)dV
A a, 4

+j(DI (Eoﬁz 'E2 *—ﬂoﬁz '-H_2 *)dV— I El J*dv
v, ¥

Now, while E;, Hj, E,, and H, are all solutions to Maxwell's equations and are
constrained by the usual boundary conditions, they are not the same functions, in general,
as shown by the lack of singularities in E; and H; and the existence of J in only V,.

However, if E and H (or at least V-E x H*) are not the same functions of the
coordinates in both V| and V,, the divergence theorem does not apply.

Thus if we are considering a volume with f(r) in one part and g(r) in another part,
the divergence theorem can be applied to the surface of that part of the volume that
contains f(r)and to the surface of that part which contains g(r)separately, but not to the

surface that encloses both volumes together (References 37 and 38). The volume must be
unifunctioned.

10
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The complex Poynting theorem is usually written in the form of Equation 9 and it will
be observed that the surface integral in Equation 9 is just the power flow across a surface
surrounding the antenna and the real part of that integral is the time average or radiated
power flow across that surface. This is true if the surface integral is only evaluated at a,
but this has little to do with Poynting's theorem per se; i.e., this could have been simply
stated without ever deriving the theorem.

In free space € and p are real, thus the first volume integral on the right hand side of
Equation 9 is imaginary. Since a; is taken to be the radius of a sphere large enough to

enclose the antenna (where J is zero outside such a sphere), the second volume integral
on the right is zero, leaving the right-hand side of Equation 9 imaginary. It follows that
the left-hand side of Equation 9 must also be imaginary, as indeed it is if the integration is
over the complete surface as in Equation 10.

Physical reasoning shows that this must be the case. If the surface integral over
(1/2)Re (E xH *) is the time average radiated power, and then it must be the same for

any sphere surrounding the antenna, i.., Re§ E x H *-dz is independent of the spherical
A
radius.

However, performing the integral over the complete surface is the same as

[§ Ex'I:I—*-dZi:] =¢$ ExH*Nda
A ra A

But the outward normal at a, is N, =#, and at a,, the inner normal is N; =—# , so the
real parts must cancel.

As a corollary, since Re[ﬁ x H*.da ] is independent of radius and the increment of
area is

da=r*sin6 do d¢ , (12)

the real part of E x H* must go as 1/ so the integration will be independent of r, and
only those portions of E and H that go as 1/r contribute to the radiated power.

To sum up this section, those who write Poynting's theorem (Reference 26) in the
form of Equation 9, then state that the real part of the left hand side of Equation 9
represents radiated power are, at best, misleading. They should state that the time

average radiated power is indeed given by (1/2)Re$ E x H*-da on a sphere external to
A
the antenna, but that this is not actually part of Poynting's theorem which is correctly

expressed by Equation 10 (with care) or by Equation 11 for the case of antennas where
there is a singularity at the origin.

11
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Finally, Poynting's theorem can be confusing in another way, insofar as the dielectric

constant, €, and magnetic permeability, p, are concerned. At least one text (Reference
30) notes that the imaginary part of the first integral on the right hand side of Equation 9
(which should be written as Equation 10), upon being multiplied by j, represents

dissipated energy. If one understands this to mean that € is the complex dielectric
constant as usually defined from :

VxH=17.+dD/ot = oE + jweoe’E = jwey(e’ - jo!wey)E = jaoege E

one would be wrong. In deriving Poynting's theorem the conduction current was already

taken into account. Thus, in Equations 8, 9, and 10, € is real (= ,"), unless some kind of
losses other than conduction losses have been included in the displacement current term
in Maxwell's equation.

That this is so can be seen as follows. Consider some volume in space characterized
by €, u, and ¢ where there is a current density J, and electric and magnetic fields E and

H. It is assumed that in this volume these. quantities are everywhere finite (no
singularities--it can be argued that for any physically real situation this must be the case).
In this case, Equation 9 applies without any need for an inner and an outer surface—only
the outer surface need be used.

It follows, in this case, that the left-hand side of Equation 9 will have both real and
imaginary parts, with the real part representing the radiation out of the volume V. It will

be assumed, for this example, that p =, and the current, J, is given by Ohm's law,

J=cE (13)

where G is real.

If it were assumed that € is the complex dielectric constant as given by
g, =¢g,(€’ -jo/w &,) with €’ and & real, the right-hand side of Equation 9 becomes

jof gy(e’~ jo/weg)E-E*dv—jo | pgH-H*dv- | oE-E*av
v 14 4

= jo | (e0€B-E*-poH H*)dv
v |

That is, the right-hand side of Equation 9 would be totally imaginary, which, of
course, is impossible since power is radiated and the left-hand side has a real part.
Clearly one has to be very careful in interpreting and applying the complex Poynting's
theorem.

12
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TIME DEPENDENT POYNTING'S THEOREM (GENERAL CASE)

Beginning with the vector identity
V-E()x#(t) = #(t)- VxE(t)- (1) -Vx %(r) (14)

where £(t) and # (t) are general real (physical) time dependent fields,

Maxwell’s equations are now
VxE()=-08(t)/ ot , (15a)
Vx#&()=9(0)+dD(t)/d . (15b)
Substituting Equation 15a and b into Equation 14 gives
V-E(t)x%#(t)=-%(t)-0B(t)/ - E(t)- 4 (1) - E(2)- D ()] ¢ . (16)

Integrating both sides over a volume in accordance with the previous section and
applying the divergence theorem:

§ EQ)x#(t)-da= | V-E@)x#(t)dv
A \%4

(17)
=-[[#()- & (1) o+ E()- 9D (¢) atdv — | E(¢)-7(r)av
% \%

Assuming that £(t), #(t), and ﬂ— (t) has the sinusoidal time dependence of Equation
3a and b and that

D =¢£ (18a)

2=u# , (18b)

Equation 17 becomes

13
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§ Ex# -da=- j(ﬁ-é’#lo”t +eE0E/ 3t) dv-[ E-gdv . (19)
A |4 v

Equation (19) can just as well be written in the form

§ Ex#-da =—(1/2)ij(;m‘-§+ez-§)dv—j§-'dv : (20)
A atV vV

The same rules regarding the divergence theorem apply as in the previous section that

the volume must contain no singularities and that £, %, and # must be the same
functions throughout the volume.

Choosing an inner sphere that encloses the antenna and any outer sphere to meet these
criteria,

[} gxﬁ-d&] =——[ (W% #I2+€€-Z/2)av . (21)
A

a,.a

[4

One can recognize the sum of (£ * £)/2 and p( #+#)/2 as the total electric and
magnetic energy per unit volume in V. Thus

[,ﬁ §x§-da] =-9U/ot (22)
A a.a

i

where U is the total energy in the volume, V.

What is the relationship between Equations 21 and 11?7 After all, complex numbers
cannot truly represent physical fields. From Equation 3a and b

£-E= (E'O' coswt+E, sin wt) (EO coswrt+Eq sin cot)

—_— - 7
= (E())2 cos? ot +(E§ )2 sin?wr+2E, -E sinotcosor

Finally, with the use of trigonometric identities,

14
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\
= = 2 2 2 2
£.2/2 =1/4)((E)? +(E2V )+ (11 0)(E5)? - (EZ)? ) cos2ar
( )(( 0)” +( o)) ( )(( 0)" = ( 0)) @33)
+(1/2)E, -E, sin2at
‘ and it follows that
|
i 2 2 2 2
Z-Z12=1/8)(H)? +(HZ +1/4(H’ ~(HZY \cos2at
(114 (BG)? + (Hg)? ) + (11 4) (o) - (B o3
+(1/2)EO 'H-O sin 2ot
Now
E-Er=(By - /B )ei™ (By + /B )™ = (Ep)* + (B§)° (242)
and
H-H*=(Hy)* +(H)® .  (24b)

Therefore, e E - E * /4 is the time average energy per unit volume in the electric field,
and wH - H */4 is the time average magnetic energy per unit volume.

On the other hand

-

Ex#= (E_o, cosax + Ey sin a)t)x(fl_o' cosaxt + 170” sin cot)
= (1/2)(50' xHy +Ey xﬁo”) +(1/ 2)('Eo' xHy -Ey x ﬁo")cos 201 (25)
+(1/ 2)(1?0' xHy +E, xﬁo')sin 201

while
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ExH*= (Eo, - jl_i'_o”)ejax x(fo' + jfo”)e-jax

(26)
= (E_o, xﬁo’ + -E-o” xﬁo”) + j(_E-O’ XH—O” - '_E_O” X 170,)
Comparing Equations 25 and 26 one finds
(1/2)Re(ExH*)=(Ex%) @7)

where the bar means time average. The imaginary part of E x H *, however, bears no
obvious relation to any part of Equation 25 except that it is the difference instead of the

sum of the quantities in brackets in the coefficient of sin 2wt in Equation 25.

SUMMARY AND DISCUSSION OF i’OYNTING’S THEOREMS

Given time domain variation of the fields and currents (Equation 3a and b), the time
domain form of Poynting's theorem is .

§ExF da=-—| (WF #/2+€E-E/2)dv— | E-fdv
A v

where the volume integrated over can be any volume with the surface integral being over
the complete surface of that volume. This is provided the volume integrated over

contains no singularities and £, #, and ﬂ— are the same vector functions throughout that
volume.

The time harmonic or complex form of Poynting's theorem is

(1/2)§ ExH*-da = j20| (¢E-E*/4-pH -H*/4)dv—(1/2)] E - Jdv
A \' \'%

This is actually Equation 9 rewritten slightly to emphasize the time average relations
between Equation 9 and the previous equation. The same conditions as to the volume,
surface, and functions integrated over apply, and it should be noted that while Equation 9

is mathematically correct, E and H are not physically realizable fields.

The usual solutions (the spherical Hankel functions) for radiation in spherical
coordinates contains a singularity at the origin, therefore, if these fields are to be used the

16
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volume must exclude the origin. Real antennas are finite in extent and generally the
fields and currents in the volume actually containing the antenna are not functionally the
same as the fields and currents (usually zero) exterior to the antenna, even though these

fields must meet the usual boundary conditions of continuous tangential £ and # with
the interior fields. Therefore, the volume must exclude the actual antenna as well as the
origin for Poynting's theorem to be applicable.

Typically ﬂ_ is zero exterior to the antenna and, given that we are usually interested in
a volume that surrounds the antenna in order to determine radiated power, Poynting's
theorem reduces to

[§§x§‘_-dﬁ] =——| (W# - #/2+€£-E/2)dv (28)
A LA

where the volume V is the volume between any inner surface A,, which surrounds the
antenna and any outer surface, A , which also surrounds the antenna.

The equivalent form for the complex Poynting theorem is

1[; Exﬁ*-Zs] = j2@ | (s'E'-'E*/4—uﬁ-ﬁ*/4)dv (29)
24 A4,

Both sides of Equation 29 are purely imaginary.

Because closed form integration over anything but spherical surfaces in spherical
coordinates can be at least tedious if not impossible, A, and A, are easiest to work with if
they are spherical so that a, is the radius of the smallest sphere, which will contain the
antenna, whether the antenna is spherical or not, and a, is the radius of any sphere
exterior to this with the same origin, in which case Poynting's theorems become:

[§ Exﬁ-da] =_'¢§7J (w# - #/2+€€-E12)dv=-3Ulo
A a.a |4

7%

and

—;-[f E'xﬁ*-da] = j20 (sE-E‘*/'4—uf_1-iI'*/4)dv
A

a.a |4

i (4

Note that £¢E - E */4 is the time average of £€£-£/2, i.e., the time average of the
total electric energy per unit volume in V. The same relation holds for pH - H */4 and
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u#-#/2. The right-hand side of Equation 21 is the time derivative of the total
electromagnetic energy in the volume V, whereas the right-hand side of Equation 11 is

j2o times the difference between the time averages of the magnetic and electric energies
inV.

Finally, it is noted (and this is separate from Poynting's theorem) that

Py =(1/2)Re§ ExH *-da (30)
A

where the above integral is around any surface surrounding the antenna and P, is the time
average power flow across that surface, i.e., the radiated power, while

=§ Ex#-da (31)
A .

is the instantaneous power flow across that surface.

Note that, in general

P — — —
B *%) (1 -#12+€E-E/2)dv
and
PA;eRe[szj (eE-E*/4—pH - H*/4)d]
\'4

as the right-hand side of the latter doesn't usually exist in most cases of interest.

A reasonably clear picture of Poynting's theorem(s), power flow across a surface
surrounding an antenna, and energy contained in the volume surrounding the antenna is
now achieved.

The question arises as to how to employ these concepts to tell something about the
antenna that one needs or wants to know. Of course, to carry out the integration, dot and
cross products etc., the presumption is that one alrcady knows the mathematical forms of
the electric and magnetic fields. If this is so, one already has the information needed for
the antenna pattern, gain, beamwidth, sidelobe levels, polarization, etc. In addition to
these things it would generally be useful to know some other properties, like input
impedance and bandwidth, i.e., the behavior of the input impedance with frequency.

18
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Engineers typically relate input impedance and bandwidth to concepts such as
resistive and reactive power flow, equivalent circuits, and the quality factor, Q. The latter
is usually found through ad hoc relations such as

0= fol&f (32)

where f, is the operating or resonant frequency and Af the 3 dB bandwidth around f;,. The

equation for the Q is often given also as a relation between stored energy and dissipated
power as

O=wU,/W (33)

where W is the time average power loss and U is the energy stored in the circuit. The
implication, of course, is that "high Q" circuits have a narrow operating bandwidth. The
power lost, W, , can be identified as the power radiated, Equation 30, in the absence of
additional ohmic losses in the antenna. The reactive energy stored can be found by the

proper integration over £ - € and % - #, using the reactive fields.

Papers on the fundamental limits of antennas have followed this general procedure in
one fashion or another to show that for electrically small antennas the ratio of the reactive
energy stored in the antenna fields to the average power radiated is large (References 1,
3, and 7). It is then concluded with reference to Equation 32 that since the Q is high,
these are intrinsically narrowband devices. Although there is obviously a certain validity
to this general approach, one has to be extremely careful not to push it too far. Although
Equations 32 and 33 may be wonderful generalizations which seem almost intuitive
through long acquaintance, they need careful examination when applied to a particular
antenna or antenna system. As always, the devil is in the details.

It is common practice in antenna texts to use the term "radiation resistance," usually
found by employing Equation 30 together with

Py =I3R./2 (34)

where I; is the input current to the antenna and R _is the radiation resistance. When this

definition is applied to an infinitesimal dipole one gets the usual formula (References 26
through 28)

R, =80m%(Az/ AY* | (35a)

or, for a short dipole with a physically reasonable current distribution
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R, =207%(h/ A)* (35b)

where Az and h are the dipole lengths.

While the radiation resistance is a seemingly straightforward concept, it too can have
its problems. It is one thing to apply it to an antenna with a single pair of input terminals
where the current is known at those terminals; it is another thing to find the meaning in
the case of an antenna array (Reference 40).

RESISTIVE AND REACTIVE POWER FLOW AND EQUIVALENT CIRCUITS
Consider the series RLC circuit shown in Figure 3 with an applied voltage

V=Vycosax . (36)

(o

FIGURE 3. Series RLC Circuit
With Applied Voltage, V.

The current through the circuit must therefore be
I= Re(voef‘”’ /z) (372)
where the impedance, Z, is

Z =R+ jX = R+ j(wL—1/aC) | (37b)
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or

Z = |Z]exp(jtan” (X / R)) =|Z]e?* . (37c)
The current then becomes
I=(V /|z|)Re[ef(“”‘¢)] = (Vo /|Z|)cos(at - ¢) = Iy cos(ax - ¢) (38)
and the power into the circuit is thus, using Equations 36 and 38,
P =1V =(V§ /|Z)coswxcos(ax - 9) . (39)

Using the double angle formula,

P= (V02 / |Z|) cosr(cosgcosar +singsinar) . (40)
However,
cosg=1/+/1+tan’ ¢ =costan'1%=R/|Z| (41a)

and
sing=tang//1+tan’ ¢ = X/|Z] . (41b)

Substituting these into Equation 40 we have

P = (V§ /212 | R(1+ cos2er) + Xsin20x] . (42)

The first term of Equation 42 ranges between zero and VOZR /|Z* = I3R and would
seem logically to be associated with the time dependence of the resistive power loss,

while the second term ranges between —I%X /2 and 15 X/2 and could be associated with
the reactive power being alternately supplied by and returned to the source.
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Such an interpretation sounds plausible (Reference 24), but is, in this case, technically
incorrect. This is readily shown by using the reactive power as the derivative with
respect to time of the reactive energy, i.e.,

Py, =dUy; 10t . (43)
The reactive energy in the inductance is
Uy =1°LI2 (442)
and in the capacitor
Ug = CV212 (44b)

where V. is the voltage across the capacitor.

Now
Uy = (V02 /2|Z|2)L0052(a)t ~¢)= (VOZL/4IZ|2) [1+cos2(wr -9¢)] . (45)
The voltage across the capacitor is

Ve =Re(1/ joC) = Re(-jVy / wClZ|)exp| (et - ¢)]

Ve = (W /0C\Z))sin(wt - ¢) . (462)
Thus
Ug = (V02 /2w2q2|2)sin2(a>z -0)=(% /4a)2C]Z|2)[1—0032(a)t— 9)] - (46b)

The total reactive energy is then
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[(wL +1/ @C) + (oL - 1/ @C)cos2(wt - ¢)] (47)

2
Vi
Uy = |0

40|Z*

which has an interesting symmetry.

Substituting Equation 47 into Equation 43

Py; = (-V§ X /22 )sin2(wr - 9) 48)

which is of a different phase and sign than (V5X/2|Z[*)sin2ar as could be gathered
from Equation 42 although the magnitudes of Equation 42 and Equation 48 are the same.

One can obtain the correct answer by finding the resistive power loss directly as
P =I’R= (V(%R/|zl2)cos2(wt ~¢)= (VOZR/2|Z|2)[1 +cos2(ar - ¢)] (49)

and postulating (note that we cannot set Py = X) that the total power flow must be
Equation 49 combined with Equation 48:

P =(Vg 12127 {R[1+cos2(ax - §)] - Xsin2(ex - 9)} . (50)
It only remains to show that Equations 50 and 42 are equal. They are and this will be
shown in Appendix B.
The reactive power flow could have been derived directly by observing that

Py =IVy (51

where
Vy = Re[jIX] = Re[ X Vel /z] (52)
or

Py =~(VpX|Z|)sin(ax - ¢)(Vp /|Z])cos(ar - ¢) = —(VOZX / 2|Z]2)sin 2(at - ¢)
which is, of course, Equation 48.
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In general, as shown in Appendix B, if the applied voltage and current are given by

V(t) = Vp cos(ot — @) (53a)
and |

I(t) = Iy cos(awt — B) (53b)
then P = IV can be written in two ways, either

P=(Vply/ 2){cos(a — B)[1+ cos2(ax - B)]+sin(cx —~ B)sin2(wt - ﬂ)} (54a)

or
P = (Vplo /2){cos(a - B)[1 + cos2(wt - )] - sin(cr - B)sin2(awx — )} . (54b)

In any given case, only one of these two expressions can be (directly and correctly)
broken into resistive and reactive power flow. The importance of this will become
clearer when resistive and reactive power flow in relation to the Poynting vector is
examined.

Before this is done, however, there are a couple of points to be made. If one
considers a single antenna as a (one port or two terminal) black box which contains any
series/paralle]l combination of capacitors, inductors, and resistors, and if one applies a
signal at any single frequency, one can measure an input impedance consisting of a real
resistance, and a series reactance. The exact relation to the various resistors and
reactance (capacitors and inductors) actually in the box depends on their values and
series/parallel arrangement. In fact, from a measurement at a single frequency with no
other a priori knowledge as to the contents of the box, one has no information as to what
the box actually contains other than, if there is a real part to the input impedance, there
must be at least one resistor in the box, and if there is an imaginary part, at least one
reactive element. Even if one has a priori knowledge of what the box contains, for
example, a series RLC circuit, a measurement at a single frequency suffices only to give
the value of the resistance and the reactance, but not L or C individually. Clearly, if the
box contains frequency independent resistors, capacitors and inductors, and one wishes to
find their values and their series/parallel arrangements, one must measure the input
admittance or impedance as a function of frequency and endeavor to find that
combination of frequency independent elements that gives the measured frequency
dependence.

The alternative would be to assign frequency dependent elements such that the

observed frequency dependence is Z(®) = R(®) + jX(®). Regardless, the power flow at
any frequency can be written in the form of either Equation 42 or Equation 50.

To illustrate this point, suppose the black box contains not the series RLC circuit of
Figure 3, but the paralle]l RLC circuit of Figure 4. The input admittance is
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Y=G+jB=1/R+jl@C-1/aL) .

(<,

|

V=YV, cos ot R L —/— C

3

FIGURE 4. Parallel RLC Circuit With Applied Voltage, V.

The input impedance is
Z=1/Y= (G—jB)/(G2 + B2)
The power dissipated in the resistance is
Pg = I}R=V2/R = V§Geos® a = (V§G/2)(1+cos2ax) .
The capacitor current is
I, = Re[Vpe/™ /X, | = Rel joCVpe ™| = ~VpwCsinax
and for the inductor current
I =Re|Voe!™ / jaL|=(Vy / oL)sinax .
The power flow to the capacitor is

Pc = IV =~(V§@C/2)sin2ar

and to the inductor,

Py = IV = (V§ /20L)sin20x
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The total power flow is then

P=Pr+Po+P = (V02 /2) [G(1+ cos2ar) — (wC -1/ L)sin 2] (63a)
or
P =(V}/2)[G(1 + cos2ar) - Bsin2ax] . (63b)

In terms of the previous discussion, Equation 63 must be the same as Equations 42 or
50, which are identities. Choosing Equation 42 as the simpler case, we must have

(V8 12)[G(1+ cos2x) - Bsin26x] = (V§ 1212 |[R(1+ cos2ax) + Xsin2ax] .
Substituting from Equation 57 this is the same as

. -1
G(1+ cos2¢f) — Bsin 2axt = [G(1+cos2er) — Bsin 2cot](|Z]2(G2 + Bz))
Since Z= 1/Y,
27 =1uyP =1/(G* +B?) (64)

one arrives at G(1+ cos 2mt) - B sin 2wt = G(1+cos 2wt) - B sin 2mt, which is the
expected result.

If the black box contains an antenna, then an antenna is by no means an RLC circuit
but rather a distributed one. Nonetheless, at the input terminals one will measure some
input impedance with a power flow which can be written in the form of Equation 42 or its
identity, Equation 50. Knowing the input voltage and current one will know whether the
input is capacitive or inductive and whether Equation 42 or 50 is appropriate from the
aspect of reactive and resistive power flow. If one measures the input impedance as a
function of frequency, one can attempt to establish an equivalent circuit for the antenna,
either a circuit that involves frequency dependent elements or a circuit involving
frequency independent elements.

It is, however, a goal of antenna theorists to establish the input impedance
theoretically. Logically, the first step is to find the "radiation resistance” via the power
radiated, i.e., the surface integral of the Poynting vector over a sphere surrounding the
antenna. Here the real part of the complex Poynting vector can be used or, if the
(physical) Poynting vector is employed, those terms with radial dependence of 1/r%.
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The power radiated is generally found in terms of the assumed antenna current
squared, and hence is related to the term I’R,, where I is the input current to the antenna

and R, is the radiation resistance. Employed this way, R is obviously a series element,

and will generally be found to be frequency dependent. For small dipoles (References 26
and 28) the radiation resistance is given as

R, =8072(h/ A)? (652)

for an assumed uniform current distribution and
R, =207*(h/2)? (65b)

for an assumed sinusoidal current distribution.

In either case, R; goes as one over the wavelength squared, i.e., as the frequency
squared. Thus any series equivalent circuit employing the radiation resistance involves
frequency dependent circuit elements. Thus one can see the motivation in using this
same integral to find the radiation reactance, and perhaps extending it to the concepts of
Q and bandwidth.

Finally one can note that while the concepts of radiation resistance, radiation
reactance, and antenna input impedance seem conceptually clear for antennas with a
single input port (actually there are caveats even here), these concepts become much
more complicated in dealing with antenna arrays (antennas with multiple input ports).
This has been covered to a limited extent in an earlier report (Reference 40).

POWER FLOW AND POYNTING'S VECTOR.

One can return to Equation 25 and rewrite it as (References 14 and 15)

§ = Zx% = Ny + N cos2at + Ny sin 2 (662)
where

N_O = (EO, xﬁo' + EO” xﬁo”)/Z s (66b)

]‘\-fi = (EO’ xﬁo' - Eo” x I_fo”)/ 2, (66¢)
and
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Nz = (EO' xI_:I-O” + Eo”xﬁo,)/z . | (66d)

If one integrates S, as in Equation 31, on a surface surrounding the antenna, the result
will be the instantaneous power flow across that surface. If the surface chosen is
spherical and centered on the antenna, then da is given by Equation 12 and da is in the

direction of 7. Thus only the radial component of Equation 66 enters into the integration
and

P=§ Ny,r*sin6d6de +cos2wt§ Ny, r?sin6d6de+sin2awt$ Ny, r*sin6dodp (67)
A A A

which can be written as

P =My + M, cos2wt + M, sin2wt (68a)

where
Mgy = § Ny, r?sin6d6de (68b)
A
My = § Ny,r*sin6d6de (68c)
A
M, = § Ny,r*sin6d6do . (68d)
A

Generally speaking, the complex time harmonic solutions for the fields in antenna
problems have the form of F(r, 8, ¢) exp(-jkr) exp(jot) . It is thus natural to combine wt
and -kr as @t - kr, which can be written as ot where

t,=t—(k/lo)r=t-ric . (69)

t. is called the retarded time and it simply means that physically the propagation time may
be small but it is not zero. Some authors, notably Grimes, generally specify the use of
retarded time in expressing power flow (Reference 22).

In fact one can always write Equations 1a and 1b in the form
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E = Eyexp(jo,) = (E'l’ - jE‘l”)exp( jaty) (70a)
B H = H, exp( ja)t,)=(l71 - jH; )exp( jat,) (70b)
so that
Z = E cosax, +E| sinor, (71a)
and
% =H cosat, + H; sinar, . (71b)

The relations between E;, H; and Ej, H are explored in Appendix C with the result

that
E = Fo'_ coskr+E, sinkr - (T2a)
E" =-E, sinkr+E, coskr (72b)
E, =E, coskr-E; sinkr | (72¢)
Ey =E sinkr+E coskr (72d)

and a like set of equations relating Hy and Hj.

The mathematical manipulations remain unchanged so Equation 66a could just as
well be written as

§=N, +N, cos2ar, + N, sin2ar, (73a)
where

Ny = (El' xH +E xﬁl")/z | (73b)
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with similar expressions (from Equations 66¢ and b) for I_V_ll and 172’.

The integration for P is over a surface and does not involve dr, thus sin 2ty and cos
2ty can also be pulled from under the integrals so that we can write

P=M, +M, cos2at, + M, sin2at, (742)

where

My = § No, r*sin6d6ds (74b)
A

with equivalent expressions for M, and M, .

Since P must be the same in Equations 74a and 68a, they may be equated and the
following relations found:

My=M, (75a)
My = My cos2kr - M, sin2kr (75b)
My = My sin2kr + M, cos2kr (75¢)
M, = M;cos2kr + M, sin2kr (75d)
M, = —Mjsin2kr + My cos2kr . (75¢)

As Grimes (References 14 and 15) observed, Equation 68a [or Equation 74a] can be
written in the form of Equation 42 or, its equivalent, Equation 50, or, more generally,
Equation 54a and b. One way to do this is to set

P = My + Mj cos20t + M, sin2a = Mo[1+ cos(20x — 8)] + My sin(2at — &) (76)

and solve for M, and &.
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From Equation 76
M; cos 2wt + M, sin 26 = M[cos 8 cos 26t + sin §sin2ax]
+ My[sin2a cos§ — cos2atsin 8|
which reduces to the pair of equations,
Mj =Mycosé— Mysind (772)
M, = Mysind + Mycosé . (77b)
Squaring Equation 77a and b and adding the result gives (References 14 and 15),
My =+(M? + M3 -MHY? . (78)
The simplest way to find d is to divide Equation 77a by 77b resulting in
M/ My =(Mycosd — My sind)/(Mysind + My cosd) .

Factoring out cosd from the numerator and denominator on the right-hand side and
solving for tan J gives

tand = (MM, — M{M,) (MgM; + M, My) . (79)
Of course, if retarded time had been used instead, one would have
P = Mo[1+cos(2at, - &)| + My sin(2er, - &) (80)

where

’

’ ’ 1/2
M, =i[Mf‘ + M3 _Mg) (81)
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and

tand’ = (MOMZ -M; My )/(MOMI, + My My ) . . (82)
Substituting Equation 75d and e into Equation 81 gives

M, = (M7 cos? 2kr + M3 sin? 24r + 2M; My sin 2kr cos 2kr + M3 cos? 2kr

) . ) 1/2
+ M{ sin® 2kr - 2My M, sin 2kr cos 2kr—M3)) (83)

)1/2

=M + M3 -MF) " =M,

This last result, taken in conjunction with Appendix B, shows that if

1/2
My = (M12 +M§ - Mg ) is chosen, one of the two possible solutions of this general

form, as discussed in the previous section results, whereas, if the minus root is chosen,
the other solution will result. On the other hand, if one works with retarded time, the
same two solutions would result. Using the plus minus subscript to indicate which one of
the two subscripts in Equation 83 is chosen, one has

—5i,=20’t_5i

which, when solved, yields

8y =08y —2kr . | (84)

This can be shown by direct substitution.

Thus it makes no difference as to whether retarded time is used or not, the same two
possible answers of this same general form result, although antenna fields are generally
most easily and naturally written in terms of retarded time.

If Equation 76 is to be interpreted in terms of resistive and reactive power flow, only
one of the two possible forms can be correct, although M, (for a one port, two terminal
antenna) would be proportional to the radiation re51stancc and, without a priori
knowledge as to which form is correct, M, could at least be taken as representing the
absolute value of the radiation reactance.
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Unfortunately, this interpretation (Reference 22) is on somewhat shaky physical
grounds. The radiation resistance seems to represent a reasonable physical concept.
Clearly the power radiated must be supplied by the signal source driving the antenna.
One can find this power radiated by integrating the Poynting vector over the surface of
any sphere surrounding the antenna. If one uses the complex Poynting vector, one takes
(1/2) the real part to find the time average power radiated; if one uses the time domain
form of the Poynting vector, one looks for that part that is independent of the radius of
the sphere chosen. If the power radiated is given in terms of the square of the input
current to the antenna terminals, then the coefficient of that square is the radiation
resistance, and if there are no other losses, such as conduction losses in the antenna, this
must represent the resistive part of the input impedance as seen at the antenna terminals.

The reactive power concept is not so clear. M,, the reactive power flow depends on
the radius of the sphere chosen, with M, generally increasing with decreasing r, since the

terms in £ and # involved with the reactive power flow go as 1/%, 1/, etc. The sphere
that just encloses the antenna gives the largest reactive power flow and is closest to the
antenna terminals. However, as seen in Figure 1, unless the antenna completely fills this
minimum sphere, there remains considerable volume exterior to the antenna for energy
storage and thus reactive power flow within the sphere but exterior to the antenna.
Although it would probably have to be done numerically, the Poynting vector could be
integrated over a surface more closely conforming to the antenna's physical shape.
However, as discussed in Appendix A, the theoretical fields close to an antenna are of
doubtful correctness in terms of the usually given electromagnetic solutions, and
integrating using incorrect fields would likely add more error than correction.

In the case of Figure 5, a capacitively loaded dipole, the capacitors add reactance not

included in the contributions of the external fields and thus there is always some
reactance due to antenna geometry not included in M,.
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FIGURE 5. A Capacitively Loaded Dipole.

Regardless of these caveats on the use of M, to find radiation reactance, there seems
to be an even bigger problem in recasting Equatlon 68a in the form of Equation 76 and
interpreting it in terms of resistive and reactive power flow. To compare Equation 76
with the circuit ana1y51s of the previous section requires that M, be real, which in turn
requires that M,? + M,? > M? in Equation 78, otherwise M, is 1magmary In Reference
41 it is shown that for

E=tjnH |, (85)

M, and M, are zero. Fields meeting this condition are known as Rumsey fields
(References 41 and 42) and are not especially esoteric. Circularly polarized fields have

this property.

If these radiation reactance (and resistance) concepts have problems, perhaps one
should instead deal with the stored energy in the antenna fields, and from this find an
antenna "Q," and an operating bandwidth. This approach will be discussed in the next
section.

ANTENNA Q AND BANDWIDTH

The basic definition of the quality factor, Q, is given by (Reference 29)
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_ o(energy stored in the circuit) _ z(energy stored in the circuit)

Q (86)
average power loss energy loss per half cycle
Written out symbolically
O=aoU/W; . 87

The instantaneous energy stored in inductors and capacitors is found from the
expressions

Up;=LI*12 (88a)

Uc; =CV2/2 (88b)

where the subscript i indicates instantaneous value since I and V are generally functions
of time.

The power dissipated in a resistance is

Wy =IV=IR=V?*/R . (89)
Equation 86 specifies the "time average power loss." If the current through the resistor is

of the physically realizable form

I=Iycosar (90)

then

Wy; = RI3 cos® wr = RIZ(1+cos2ar)/2 . (1)
The time average power loss is then
W, =RI§/2 . (92

If the current is assumed to be in the physicalfy non-realizable time harmonic form
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I=Ipel®™ (93)

and
W, =RII*/2=RI3/2 , (94)

the time average power loss has been found. One could recover W . from the time
harmonic complex notation form by employing

Wy; = R(IT*+Rell)/2 = (R/2)Re(I[ *+1I) . (95)

Running the same current through an inductor in series with this resistance, the stored
energy is

Uy = (L/2)I3 cos® ot = IZL(1+ cos2ar) /4 . (96)

Applying this directly to Equation 87 results in a time dependent Q

_ @L(1+ cos2amr)
2R

O 0]

and while there is nothing wrong a priori with this, Q is usually given as a time
independent quantity. Curiously enough, if one changes the definition of Q in Equation
86 in the denominator from being the time average power loss to instantaneous power
loss, one would have

_ @I3L(1+ cos2ax)/ 4
ng(l +cos2ax)/2

Oy =wL/2R (98)

which is time independent.

If U is defined to represent the peak energy stored, which is
U=1I3L/2 (99)

one finds that
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0=(wl3L/2)/(RI§12)=wLIR . (100)

This is the usual equation given for the Q of an inductor and a series resistance, and it is
in this sense that many engineering texts define Q (Reference 29).

If one were to use the average energy stored rather than the peak energy, one would
have

Up,=I3L/4 (101)
and
0,=wL/2R , (102)
which is the same as in Equation 98.
It is this definition of Q that is used by other texts (Reference 43). Again, Q, = Q/2,

but this is not always the case and this will be discussed in detail later. In this case we
also have Q_= Q,, but, in fact, Q, is not generally independent of time as shall be seen.

Suppose the series inductor is replaced with a series capacitor. The time harmonic
voltage across the capacitor is given by

V, = jXIe!™ = - jlye’™ | oC | (103)
so that
v, = Re[vc'] = (Ip/oC)siner . (104)

The energy stored in the capacitor is

Ugi =(CI§ 10C?)sin e = (1} 140°C)(1- cos2ax) . (105)
The peak energy stored is
_ 72 2
UC"IO 120°C (106a)
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and the time average energy is
Uc, = I3 140°
Ca=1p/4@ C . (106b)

In terms of peak energy, then, the Q is
0 =(13/202C)/(RI3 12) =1/ CR (107)
which is the usual equation for the Q of a series capacitance and resistance (Reference

29).

In terms of the time average energy stored, the Q is
0,=1/20CR . (108)

Thus Q, = Q/2, but again this is not always the case.

One can also see from Equations 100 and 107 that in these two cases, Q = IXI /R, i.e.,
the absolute value of the reactance divided by the series resistance. Again, this is not true
in general. '

In this case, it is important to note that Q_is given by
1201 2 .2
0: =|15 (1—cosZwt)/4a)C]/[RIO(1+cosZaJt)/2] = tan? @t/20CR . (109)

From this, it appears that Q¢ might not be a useful concept, since it ranges with time
from zero to infinity.

Turning to the series RLC circuit of Figure 3, one could, of course, directly use the
previous equations by using the current as given in Equation 90. However, Figure 3

shows an applied voltage of V cosmt, so it is instructive to use Figure 3 directly with the
given applied voltage, rather than replace it with the current of Equation 90. The answer
will be the same.

The time harmonic current is given by
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I'=V'1Z=Vpe™ [[R+ j(wL -1/ &C)]

= Ve @ exp(— jtan™! X/R) /(R2 + X2)1/2
or
I’ = (Vo /|Z])expl (et - 9)]
where
Z= ('R2 + XZ)“2 and g =tan ' X/R .

The time dependent current is then
I=(Vp/|Z))cos(at - ¢) .
The energy stored in the inductance is then
UL = (LV§ 1422 )[1+ cos2(at ~ 9)]
while the power lost in the resistance is
Wy, = (VOZR/2|Z|2)[1 +cos2(ar - )]
with a time average power loss of
W, = VERI2)Z]? .

The time harmonic voltage across the capacitor is

Ve = (XcVo /12])exp (et — 8) = (Vo / oC\Z])expl (et - - /2)]

and the time dependent voltage is

(110)

(111)

(112)

(113a)

(113b)

(114a)



NAWCWD TP 8419
V, = (Vo/ @CZ|)cos(wt — ¢ — m/2) = (V,, / @1 Z])sin(ext - §) . (114b)
The energy stored in the capacitor is thus
Ui =(CW 1207C?|Z[1-cos2(ar - ¢)] (115)
and the total stored energy is

Uy = Uy + Ugy = (V8 1422 {1+ cos2(ax - )]+ (11*C)1-cos2(ar - 9)]}

U; = (Vg /40(2f JJoL +1/0C +(aL -1/ aC)cos 2w - 9)] . (116)
The time average stored energy is then
{2 2
U, = (W 14|z (@L+1/0C) . (117)

The peak stored energy, however, depends on whether wL > 1/0C or not. Thus

U;(V§/2w|z]2){1/wwé meLiijzccomzwo (118)
; s or @ < @y
where the resonant frequency is given by
wy =1/JLC (119)
Using the peak energy definition of "Q," then
O=awL/R ; w2ay (120a)
O0=1/aCR ; w<wy . (120b)

On the other hand, the average Q is given by
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Q,=wL/2R+1/20CR . (121)
At very high frequencies (@ >> ®,) where 1/20CR is negligible, the average Q, is
®L/2R or one half the peak energy Q as given in Equation 120a.

At very low frequencies (@ << @)) where ®L/2R can be neglected, Q goes to
1/2@CR, also one half the peak energy Q.

On the other hand, at resonance when ® = m,, the peak energy Q is

Qp =L/RJLC =(1/R)\L/C | (122)
while
Qa0 = LI2RJLC +J[LCI2CR =(1/RWLIC =0y . (123)

Thus, in a series resonant circuit, Q, ranges from Q/2 to Q. It can be shown that these
limits hold for any circuit, starting with the premise that stored energy is always positive,

(U, > 0), and that it consists of a time dependent part that varies as 20 and a time
independent part.

It follows that a stored energy versus time plot must look like Figure 6, which

represents a sinusoidal waveform plus a dc component such that the function is always
positive. From this figure, if U, = 0, then Ua = U/2 and Q, = Q/2, as is the case for a

series resistor and capacitor.

On the other hand, if U- U, is small (the time varying part is small), U, = U and Q, =
Q. At resonance in the series resonant circuit, the time varying part of the stored energy
is zero (the total reactance is zero) and Qal = Q. Thus it is clear that

0/2<0,<0 (124)

for all circuits.
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t —>
FIGURE 6. A Typical Stored Energy as a Function of Time Plot.

So far the examples covered have been series circuits; parallel circuits must be
discussed also. Consider a capacitor, C, in parallel with a resistance, R, across which is

applied a voltage V,coswt. The instantaneous energy stored is
Ui =(CV§ 14)(1+
G = 0 cos2ax )

while the power loss is

Wy = R(Vo2 cos? cot/Rz) = V#(1+cos2ar)/2R .
Then, in terms of peak energy stored, the Q is
_ 2 2 _ '
0 = (wcvg 12)/(V /2R) = @CR (125)

while in terms of time average energy stored it is

_ aCR

> (126)

Qs
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Thus the peak energy Q is the inverse of the series RC case, but the time average Q,is
still one half of the Q as calculated from the peak energy.

Considering the case of an inductance, L, in parallel with a resistance, R, the current
through L with the same applied voltage is

I =(Vp/oL)sinat (127)

and the instantaneous stored energy is

U = (L12)\V8 10?1 Jsin® ot = (V§ /407 L)(1 - cos2ar) . (128)
The Q is
O=R/al (129)

i.e., the inverse of Equation 100 for the series RL case. The time average Q becomes
0,=R/2aL . (130)
Consider the complete parallel RLC circuit of Figure 4. The total stored energy is
U;=Up+Ug = V02[1/a)L+ aC+(wC -1/ wL)cos2at|/ 4o . (131)
The time average stored energy is
U, = VE(oC+1/oL)/ 40 , (132)

while the peak stored energy is

2 C oC>
U_{ VECI2 ; aC21/al 133

“\Wgcr2e?L ; ec<liaLl

Thus
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0, =R(oC+1/alL)/2 (134a)

and

oCR ; oCzl/al
Q={ (134b)

R/oL ; wC<l/ol °

In this case, after comparison with Equations 120a, 120b, and 121, it is seen that the
time average Q, is not the inverse of the series case, rather L and C are interchanged.
Again, at resonance, Q, = Q and Q, is in accord, as it must be, with Equation 124.

Reference 43 gives two equations for finding the Q of a circuit. They are

Q0,=(w/2R)X/Jw , (135a)

0, =(w/2G)dB/dw . (135b)

We have added the subscript a to Q, because it will now be shown that the application of
either of these equations leads to the time average Q,. Consider the series resonant circuit
of Figure 3. Now

0, =(w/2R)d(wL-1/wC)/dw = (wL+1/wC)/2R
which is of course, Equation 121.

Now apply Equation 135b to the parallel circuit of Figure 4. Then
0, =(wR/2)d(wC-1/wL)/dw = R(wC +1/wL)/2
which is Equation 134a.

Equations 135a and b may have been assumed to be universal but, in fact, Equation
135a applies only to series circuits and 135b only to parallel circuits.

To show this, consider the circuit of Figure 3. The input impedance is
Z=R+ j(wL-1/wC) =R+ jX (136a)

and the input admittance is
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Y=G+jB=1/Z=(R- jX)/(R*+X?), (136b)

Applying Equation 135b,

0. = (@/26)3-X /(R + X230
or
0p =|o(x? - R2)/2R(x? + B?)|ox /90

and
0, =[(@L+1/aC)/2R](x* - B)/(x* + B?)] .

This is not the same as Equation 121, but rather is modified by the factor (X°-
R*)/(X*+R?). For @ very small, this factor goes to unity since 1/ ®C >> R and 1/ ®
C>> o L and this equation would give a correct value for Q,. Also, for ® very large, the

same is true. Otherwise this expression is incorrect, although, curiously, as ® — @, X —
0, and the above equation reduces to

0, = —(oL+1/wC)/2R

i.e., the negative of the correct value. The same procedure of finding the input
impedance of the parallel circuit of Figure 4 and applying Equation 135a yields similar
results.

Any series circuit consisting of N, resistors, N, inductors, and N, capacitors can be

replaced with Figure 3 where R is the sum of the resistors, L the sum of the inductors,
and the capacitance C can be found from

1/C=1/C1+1/C2+ ...... +1/CN3 . (137)

A parallel circuit containing N, resistors, N, inductors, and N, capacitors can be
represented by Figure 4 where C is the sum of the capacitances, and

1/R=1/R+1/Ry +......+1/ Ry  (138)

with
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VL=UL+1/Ly+....+1/Ly, . (138b)

It follows that Equation 135a applies strictly only to series circuits and Equation 135b
to parallel circuits and neither is exact for general series-parallel circuits.

It is common to give the Q in terms of a resonant frequency divided by a 3-dB
bandwidth, i.e.,

O=rfolldy - (139)

In fact this expression is used so much that it is easy to subconsciously accept it as a
fundamental definition of Q, instead of in terms of the stored energy and the power loss
per cycle. Upon reflection, however, it is immediately clear that this expression is
somewhat meaningless in terms of, say, a simple series R and L circuit where there is no
resonance. Thus Equation 139 cannot be applied to every circuit, only those that
resonate. It follows that if an antenna is operated in a frequency region where it is not
self resonant, then the “Q” of this antenna can be treated in terms of Equation 87, i.e.,
stored energy and power loss, but not directly in terms of Equation 139. That is, given
the Q and the operating frequency, one cannot use Equation 139 to find the bandpass,
since the antenna is not resonant. Antennas that are small with respect to a wavelength
are usually in this situation (References 44 through 47).

If it is assumed, for now, that resonance means a real input impedance (the reactance
goes to zero at f,), then one can talk about the “bandwidth” only in terms of the antenna
plus its matching circuit, or at least in terms of the antenna plus whatever reactance is
added externally to cancel out the antenna reactance. For example, suppose that around
the operating frequency, f,, our particular antenna can be well represented by a frequency
independent resistance in series with a frequency independent capacitance, i.e., R and C
of Figure 3. The “Q,” of this combination is given at resonance by Equation 107 with
® = @, Adding a series inductor, L, so that L = 1/ ®,’C, the input impedance at f, is just
R. It should be noted that the antenna is still not “matched” in the classical sense, unless
it happens that R = Z,,, the characteristic impedance of the generator being used to feed
the antenna.

The current through the series RLC circuit of Figure 3 in time harmonic form is

Ic = V¢ /[R+ j(oL-1/aC)) (140)
where V = Re[V ].

' The time average power loss in the resistor is given by Equation 94 and is
Wy = VR/2[R* +(al-1/aC)?] . | (141)
At resonance the time average power loss is
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Wo=VZ/2R . (142)

Since the time average power loss decreases for frequencies on either side of @,, one

can look for the 3 dB frequencies, ®, and ®,, where the power dissipated is down by a
factor of 2, i.e.,

Wi/ Wi = {VozRIZ[RZ +(ogL- 1/m1,2c)2]}(2R/V§) =1/2
or

R /[R2 +(oypL- 1/a>1,2C)2] =1/2
which results in

(@2L -1, =R . (143)

The resistance, R, is always positive so that in taking the square root of both sides,

wy,L—1/0,C=R ; @y >0y (144a)

and

VeoyC-aoL=R ; 1/onC>wmL orw >awgy . (144b)
Equations 144a and 144b can be solved explicitly for o, and ®, giving
W, = [RC +VRC? + 4LC]/2LC (145a)

and

wy = [—RC+\/R2C2 +4LC]/2LC . (145b)
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Aw=w,-w;=R/L , (146)
then

0o/ Aw = fo! Af =L/ R =0, (147)

where Equation 147 is also Equation 139.

Since no approximations have been made, this expression is exact for a series
resonant circuit.

It is interesting to note that

Ay =0y — 0 = a)o[a)oRCh/a)%RzCZ +4 - 2]/2 (1482)

while

Aoy = w0y — o) = wo[woRC—1/w8R2C2 +4 +2]/2 . (148b)

Thus the resonance curve is not symmetrical in ®, since A®, # A®,. In fact
Aw, = Aoy ' (149)

because

JRR2C? +4 22 . (150)

For high Q circuits where R is small enough, Aw, will become virtually equal to Aw,,
however.

Of course the Q involved is for the whole series RLC circuit, however, the antenna
was assumed to be a series R and C with a matching coil to make the impedance real at
the operating frequency/resonance. Since both the capacitor and inductor store energy,
one can quickly see that the total energy stored might be greater than for the antenna
alone. It can be seen that adding any further reactive elements for, say, the purpose of
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matching the input impedance to a characteristic impedance (or any other purpose for that

matter) might raise the Q, and, by implication narrow the bandwidth Af in Equations 148
and 140. In fact, it can be shown, given a circuit with some Q, that the addition of
reactive elements in either series or parallel carries the following condition on the
resultant Q ;

020 . (15D

This proof is carried out in Appendix D.

In the example just covered, the Q, of the matched circuit is 1/CR for frequencies
below or equal to the resonant frequency, i.e.,

0,=0 : f<h (152a)

and the addition of the inductance leaves the Q unchanged. For frequencies above
resonance, however,

0, =L/ R=0/03RC = 00y /0y = 0*Q/ 0} . (152b)

That is, Q, is greater than the Q of the antenna alone. Of course it can be argued that near
the operating frequency, f;, the Q doesn’t change much for a high Q circuit because f/f,
must be near unity to stay within the 3 dB bandwidth.

In summary, if an antenna could be faithfully represented by frequency independent
series resistance and capacitance (and the authors know of no such antenna), the Q as
determined from the radiated power and stored energy could be used to determine the
operating bandwidth and frequency with a series inductance for matching.
Unfortunately, this has not been shown to be the case in general. For example, a parallel
inductance could be chosen as a matching element for the hypothetical series R and C
antenna in Figure 7.

o
I R
V =V, cos ot L
ln T C

FIGURE 7. Using a Parallel Inductance as a
Matching Element for a Hypothetical Series
R C Antenna.
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Before dealing with this case, one needs to derive the equivalent of Equation 148 for
a parallel resonant circuit. While it seems that this should be straightforward, there are
conceptual difficulties to overcome. In using the power loss of Figure 3 at resonance and
the 3 dB frequencies to define the operating bandwidth, there was no difficulty because
the current I through the (radiation) resistance had an inverse relation with the
impedance, Z. However, if Figure 4 is used as drawn, maintaining a constant voltage

V,cosmt across the circuit, the power lost (radiated) will be independent of frequency as
V,2cos? ot/R.

Typically in portraying experimental work the signal source is shown as a voltage
generator in series with a series impedance Z, so that actual circuits look like Figures 8a
and 8b. Figure 8a can be treated exactly as Figure 3 with R replaced by R, =R + Z, as
long as Z,, is real, and the loaded Q; becomes;

Qr=wL/Ry ; f2fy (153a)
0. =1/wCRr ; f<fy . (153b)

Figure 8b is different. The characteristic impedance Z, absorbs some of the generator
output, but as Z, goes to zero the power lost (radiated) in the (radiation) resistance, R,
becomes independent of frequency. One could replace the voltage generator with a
current generator having a characteristic conductance across the generator, but while this
simplifies the mathematics of the situation because parallel conductances add, the
problem remains. The two representations are exactly equivalent as is shown in
Appendix E.

V=V,cosot (" L

—I—C

(a)

FIGURE 8(a). Series RLC Circuit With Signal
Source Shown as a Voltage Generator in Series
With Impedance, Z,.
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ZO

A%
V=V°coscot€[w>
~ ' R§ L <C—=

(b) :
FIGURE 8 (b) Parallel RLC Circuit With Signal
Source Shown as a Voltage Generator in Series

With Impedance, Z,,.

Another approach is to examine Figure 3 and observe that IZ| is a minimum at
resonance, rising to infinity as f — 0 and f — . The admittance, |YI, then has a typical

resonant shape with a peak at f = £,

Looking at the absolute value of the admittance,

1/2
[¥]=1/[R? + (L - 1/aC)? |

then

Yp=1/R

and at the 3 dB points
) o l/2
|Y1,2!/|Y0| = R/[R +(w1,2L— I/wI,ZC) :l =1/+2
which results in the equation

(601,2[4 - 1/(01,2(;)2 = R2

(154a)

(154b)

(154¢)

which is, of course, just Equation 143 and the solution must be Equation 147 as

previously found.
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In Figure 4 it is the absolute value of the impedance that is maximum at resonance
and goes to zero as f — 0 and f — . The admittance of Figure 4 is just

Y=G+j(wC-1/aL) (155)
where G = 1/R. Then
Z,=1/G (156)

so that the 3 dB relation is

) )
IZL2|/|ZOI=G/[G +(wy2C- 1/, L) ] =1/2 (157)

resulting in the equation
(@20~ 1/ey,L) = G2 . (158)

Equation 158 is of the same form as Equation 143 with C and L interchanged and R
replaced by G. Thus the solution must be given by Equatlons 146 and 147 with this
interchange and substitution, i.e.

Aw=G/C (159)

and
0y /A0 = 0,C/G =w,CR=0) . (160)
A parallel resonant circuit has the same relation between Q and the resonant

frequency divided by the 3-dB bandwidth as the series resonant circuit.

Of course not all circuits are wholly series or wholly parallel but may be some
combination of series and parallel elements. * -

Figure 7 is a simple example of such a circuit. If one cares to analyze this circuit, one
will find it far more algebraically “messy” than a simple series or parallel RLC circuit. If
the series R and C represent some “mythical antenna,” one will find the concepts of
matching and bandwidth considerably more complicated.
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CONCLUSION

This report has been devoted to examining some of the basic ideas and assumptions
that are involved in the theoretical analysis of small antennas. Poynting’s theorems in
both the time and frequency domain cases have been derived and the conditions under
which they are mathematically applicable carefully examined. The relationships with
stored energy, both time dependent and time average, were derived.

It was shown that the concept of integrating Poynting’s vector over a surface
surrounding an antenna to find the power flow, although valid, is not generally the same
as or even a part of Poynting’s theorem. :

Resistive and reactive power flow into circuits was examined and compared with the
power flow across a closed surface surrounding an antenna. It was pointed out that while
using this approach to find the input or radiation resistance of a single port antenna can
often be justified, the situation as regards finding antenna input reactance is on very
shaky ground indeed.

. Because small antennas are frequently referred to in terms of “Q” and bandwidth,
these concepts were explored for series and parallel circuits. Even here much room for
misinterpretation and misconceptions was found. Indeed it was found that all of the
references quoted here dealing with limitations on the performance of small antennas
(References 1 through 24) could be criticized on the grounds of misapplying the
fundamentals covered in this report.

However, much more remains to be covered, i.e., to find the theoretical limits on
antennas that are small with respect to a wavelength. Some of this work has actually
been done in the form of notes and derivations but space, time, and money constraints
prevent its inclusion in this report. Further reports are planned dealing with such subjects
as some particular antenna configurations that could show performance much improved
over the Wheeler limit (Reference 2), Rumsey antennas (Reference 42), and new
applications of spherical harmonics and multipoles to small antenna analysis.
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Appendix A.

THE “EXACT” DIPOLE ANTENNA AND ITS
TANGENTIAL BOUNDARY CONDITION

Consider the dipole antenna of Figure A-1, constructed of conducting wire with a
diameter of a, a gap width g, and a total length L. If the wire is made of a good
conductor, if L >> a, the gap width g is very small with respect to a wavelength, and L is
on the order of a wavelength, it is usually assumed (Reference A-1) that Figure A-2 is a
good model with which to represent Figure A-1, so that the radiated fields can be
reasonably found and calculated.

L2

U
5

FIGURE A-1. Wire Dipole Antenna.

The model in Figure A-2 could be said to be benign in the sense that increasing the
conductivity of the wire, decreasing the wire diameter a, and the gap width g, albeit this
limits the permissible driving voltage, should enable the real antenna to arbitrarily
approach the model.

A quite general solution to Maxwell’s equations can be found using a vector potential
formulation. For the time harmonic case, this vector potential is given by,
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1)

r—7

% 4 v’

For the line source of Figure A-2, this reduces to:

L/2  -JkR
A, = [ I(Z)y——d7 -
-L/2 R

(A-1)

(A-2)

To solve the dipole problem it is customary, at this point, to assume a current

distribution, I(z"). Typically a sinusoidal current distribution of the form

I@) = Ipsin[k(L/2-|¢])] ;5 -L/i2<2'<L/2
is assumed.
Z
L2 ~_ R,
z’ R
r
I(z) T
R

LR 2

FIGURE A-2. Model for Dipole Antenna.
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This current distribution is an assumption but it seems a reasonable one, with the
characteristics of a standing wave and going to zero at the dipole ends. In any case, the
radiation characteristics of a dipole do not appear to be overly sensitive to the form of the
assumed current distribution (References A-2 and A-3), with assumed rectangular,
sinusoidal, and triangular distributions giving very similar results.

If Equation A-3 is substituted into Equation A-2 and utilizes

FI- = -]:-sz (A-4a)

7

which is in this case

Hy = _1a4, (A-4b)

u dp

one obtains terms under the integral that are exact differentials (Reference A-1), and
carrying out the integration, the magnetic field is

Hy = _.IO [e—ij’ +e MR 2cos(kL/ 2)e‘jk’ ] . (A-5)
4jmp

The nonzero electric field components can be found directly from this by taking the
curl of f resulting in,

'Z I s _:
Ep =—E00 (2 1/2)e” ™ /R + (2 + L12)e R 1R,

4mp
(A-62)
~2zcos(kL/2)e /7]
E, = '—’427[—01-0-[57"& IR +e R /R, — 2cos(kL/2)e‘f"’/r] : (A-6b)

Within the limits of the model and the assumed current distribution, these appear to
be exact expressions for the fields everywhere exterior to the line source. It is
straightforward to transform these fields from cylindrical to spherical coordinates and

make the assumption r >> L and find the usual far field expressions for such an antenna,
ie.,
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(A-7a)

9

_ jle™® cos(kLcosB)/2 — cos(kL)/2

H
¢ 2nr sin@

Eg = ZoH¢ . (A'7b)

Since no dispute of these results has been found in the literature, it is assumed that
Equation A-7a and b represent a close approximation to experimental results in the far
field, and with the emphasis on near-field measurements in these past several years, one
might expect that Equations A-5 and A-6a and b have been experimentally verified to
within some fairly close proximity to the antenna surface.

Nonetheless, Equation A-6b possesses a quality which, upon discovery, must make
any engineer who started his career in metallic waveguides feel at least uneasy. Namely,
the tangential electric field does not go to zero at the antenna surface, or even anything
close.

This is most easily demonstrated by the example of a half-wave dipole where L = A/2.
It then follows that cos (kL/2) = cos(2p/4A) = cos (m/2) = 0. Next, choose an observation

point P(p,z) = P(p,L/4) = P(p,I/8). Choosing z = 0 would simplify the math, but, for p =
0, this corresponds to the gap on the real antenna and enforcing tangential E = 0 there
might be considered unreasonable.

For the chosen observation point, P, R, and R, become

R? =(z—LI2)* +p* =(A18—-A14)? + p? = A2 /64 + p? (A-82)
R} =(z+L/2)%+p* =922 164+ p? (A-8b)
rP=2+p?=22/64+p? =R - (A-8c)

Equation A-6b for E, is then

_7 -1/2 1/2
E, = ._%1’*0{(12 /64 + p2) exp[— jk(lz /64 + p2) ]
(A-9)

{942 /64+ ,92)_”2 exp[— jH(9A? 164+ pz)llz]} .

60



NAWCWD TP 8419

If one now takes the limit as p goes to zero, which ought to be tangential E for a very
skinny dipole, there results

lim E, = 2.10834 Zyly/7iA - (A-10)
p—0

It could reasonably be argued that even though tangential E must go very close to

zero for the real antenna, with finite conductivity at p = a/2 in Figure A-1, it is
unreasonable to expect this for the line source in Figure A-2. For if the resistance of the
wire antenna is

R =ad*/4Lo (A-11)

then lim R, as a = 0, 0 — < is indeterminate

This might be a good argument, but one would expect that tangential E ought to at
least have a local minimum somewhere around p = 0. This doesn’t seem to happen.

Tangential E is actually maximum at p = 0, and decreases monotonically after that.

To show this one can take

|Ez|2(7z2/12 14Z313)=F =1/(1 +64f2)+1/(9+64f2)
(A-12)

2cos(n(J9+64f2 —J1+64f2)/4)
V1+64£29+64f>

=+

where f = p/A

One could take dF/df and show that it is always less than, or equal to, zero and,

therefore, that F, and hence IE,| decreases monotonically as one moves along p away
from the antenna. It is easier, however, just to plot F versus f and this is done in Figure

A-3, out to f = 0.5 (a half wavelength). F is maximum at p = O and decreases
monotonically with f(p).

Clearly, tangential E does not only not go to zero at the antenna for the model of
Figure A-2 and the assumed sinusoidal current distribution, it doesn’t even go to a
minimum.
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Fl|E,| @Z= %
0.1 | I | ] |
0.1 0.2 0.3 0.4 0.5
P
A
FIGURE A-3. Plot of F (Which is Proportional to the Magnitude of E, Squared)
Versus f.
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Appendix B
ALTERNATE FORMS OF THE CIRCUIT POWER FLOW EQUATION

Suppose we have

i(t) = I cos(axt — B)

A

V(t) = V, cos(ot-0) Z

Y

The power flow in the above is given by

P(t) = V()i(t) - (B-1)

Of course V, and I, are not independent, being related by the magnitude of the

impedance. The phases o and Bare not independent either, their difference being a
function of the ratio X/R when Z =R +jX.

Carrying out the operation implied in B-1

P(t) = IyVy cos(awrt — B)cos(ax — x)

or

P(1) = -I—(’;—O[cos(a—ﬂ)+cos(2a)t—a—ﬂ)] (B-2)
by using a trigonometric identity, B-2 can be rewritten as

P@) = %[cos(a — B) +cos(2wt -2+ B - )] (B-3)

or
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P(H)= IO—ZVO-[cos(a — B) +cos(B — &) cos(2ax — 2 ) — sin( - ot)sin(2ax - 28)|

and finally

P(r)= -{02&[cos(a — B)(1+ cos(2ax - 28)) + sin(cr — B)sin(2¢t - 2[3)] . (B9

Of course it could also be written as
IpVo
P(r) = T[cos(a ~ B)+cos(2ax —2a+a - B)] ,

leading to

P(t)= l%lg[cos(a - B)(1+cos(2ar - 2a)) —sin(a — B)sin(20t - 2a)] . (B-5)

As seen in the main body of the report the resistance R is related to cos(o—f) and the

reactance X to the sin (0—P).

The exact relation can be found by observing that

jax ~jor
Yoe'7e T _ K)-cos(wt— o-tan”(X/R)) -

I(t) =Re =
® R+jX |Z|

Thus

I = I};OT and B =0 +tan"(X/R) -
Then

cos(ot— f) = cos(—tan"'l(X / R)) = cos(tan'l(X / R)) = l—lzil
and
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sin(a ~ B) = sin(~tan~ (X / R)) = —sin(tan™!(X/ R)) = —I—"Z-(—l . (B-8b)

Both B-4 and B-5, being identities, correctly represent the power flow, however only
one of the two, as explained in the main body of the text can be correctly broken up so

that the 1+ cos (2wt - 0) represents resistive power flow (where ¢ is either 25 or 2a) and

sin (2wt - ¢) represents reactive power flow. Which form is correct requires a priori
knowledge about the circuit, which is not directly found in the integration of the Poynting

vector. Nonetheless the multiplier of 1 + cos (2mt - ¢) is proportional to R, so R can be
found unambiguously regardless of whether the proper expression is chosen. However,

the multiplier of sin (2t - ¢) is only proportional to IXIl, so that only IXI could be, in any
case, inferred from the integration over the time domain Poynting vector. In any case B-
4 and B-5 are of the general form

P = A[(1+cos(2ax — ¢))| + Bsin(2er - ¢) . (B-9)
Is it possible to write either of these (Equati.on B-9) in the form
P = C[1+cos(20% — 8)]+ Dsin(20t - 6) (B-10)

where C, D, or 0 are different than A, B, or $? If so then further ambiguities as to the
value of R and X (actually IXI) would be introduced upon the integration of the time
domain Poynting vector.

Set B-10 equal to B-9 obtaining

C[1+cos(2ax — 6)] + Dsin(2at - 6) = A[1+ cos(20% — 9)] + Bsin(2a¢ - ¢) (B-11)

where A, B, and ¢ are known, C, D, and 6 are unknown.

Rewriting B-11 as
C + CcosOcos 2wt + CsinOsin 2a¢ + DcosOsin 2t — Dsin 8 cos 2wt

= A+ Acos@cos2at + Asin@sin2t + Beos ¢sin 2wt — Bsin g cos 2wt

or
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C +(Ccos8 — DsinB)cos2at + (Csin6 + DcosB)sin 2ax

(B-12)
= A+(Acos¢ — Bsin¢)cos2ax + (Asin ¢ + Bcos@)sin2a¢
To be true for all values of t one must have
C=A . (B-13)

This can easily be seen by setting 2wt = 7, then 2wt = - T, resulting in the equations

C+Ccos@—DsinB = A+ Acos¢ — Bsing
and

C—Ccosf@+ Dsin@ = A—- Acos¢ + Bsing

Adding these equations gives C = A.

Thus B-10 is constrained to the form
P = A[1+cos(2wt - 0)]+ Dsin(2wt - 6) - (B-14)
Equation B-12 becomes
(AcosO — Dsin6)cos2ax + (Asin6 + Dcos8)sin 2wt
= (Acos¢ — Bsin¢)cos2at +(Asin g + Bcos §)sin 2o¢
To be true for all values of t one must have

Acosf - Dsin6 = Acos¢ — Bsin¢ (B-15a2)
Asin@ + Dcosf = Asing + Bcos¢ (B-15b)

where A, B, and ¢ are assumed known and D and 6 unknown.
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To eliminate “D” from B-15a and B-15b, multiply through by cos 6 and sin 6
resulting in

Acos?® 0 — Dsinfcos6 = Acos¢cosé — Bsin¢cosO

and

Asin? 6+ Dsin@cosf = Asin¢sin@ + Bcos¢sin6
Adding the above, one obtains

A = A(cos¢cos +sin ¢sin6) + B(cos ¢ sin @ — sin pcos6)
or

A = Acos(6— ¢)+ Bsin(6 - ¢) - (B-16)

Equation B-16 can be solved as follows. Rewrite it as

A ._B tan(6 — ¢)

A= Ji+tan2(6+9) 1+tan®(6-9)

or
A1+ tan®(6 - ¢) = A+ Btan(0 - ¢)

Squaring both sides and collecting terms, one obtains
(4% - B?)tan*(6 - ¢) - 24Btan(6 - 9) = 0 - (B-17)
Thus either

tan(6 — 9) = 0 4 (B-18a)
or

2AB
A% -p?

tan(6 - ¢) = (B-18b)
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and the solutions to B-18a are

9=¢ ’ (B-l9a)
0=¢+m > : (B-19b)
6=¢p-m - (B-19c)

Substitution of B-19a into B-15a and 15b leads immediately to the trivial solution
D=B . (B-20)
Substitution of B-19b into B-15a and 15b gives

—Acos$+ Dsin¢ = Acos¢ — Bsin¢ (B-212)

and
—Asing — Dcos¢ = Asin¢g — Bcos¢ . (B-21b)
Multiplying the first equation by sin¢ and the second by cos¢ and subtracting gives
D=-B . (B-22)
However substitution of this solution back into B-21a and B-21b results in A = -A which
is not allowed unless A = 0 which is not a general case.
Substituting B-19¢ into B-15a and B-15b gives
~Acos¢+ Dsin¢g = Acos¢ — Bsin¢ (B-23a)

—Asing — Dcos@ = Asing + Bcosg . (B-23b)

Again, multiplying the top equation by sin¢, the bottom by cos¢ and subtracting results in
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D=-B, (B-22)

but with the same result, A = -A, i.e., A = 0. Thus B-19b and B-19c are not general
solutions.

This leaves B-18b as the only other possible general solution. In fact since it is
known from B-4 and B-5 there are two such solutions, it is the other general solution.
However, to find D in terms of B by direct substitution of B18b into B-15a and B-15b is
algebraically messy. It is easier to return to B-15a and B-15b and rewrite them as

A(cosf — cos¢) = Dsin6 — Bsin ¢ (B-24a)
and '

A(sin@ —sin¢) = Bcos¢ — DcosO . | (B-24b)

Eliminating A by multiplying the top equation by (sin® - sin¢) and the bottom equation
by (cos® - cos¢) and subtracting gives

D(1-sinBsin¢ — cos@cos$) + B(1 - sinfsin¢ — cosfcosp) = 0
Either

D=-B (B-25)
or

1-sinfsing —cosfcosf =1—cos(6-¢)=0 - (B-26)
Equation B-26 is the (trivial) solution already given in B-19a

Therefore B-25 corresponds to the solution given in B-18b. This can be verified by
substitution of B-25 and B-18b into B-15a and B-15b.

Thus, it follows that Equation B-9, corresponding to Equation B-4, can be rewritten
as

| -1 2AB : _1 24B
P= A[1+cos(2wt— ¢ —tan~! YO )}—Bsm(Zwt—(b—tan 1 you Bz) (B-27)
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which must then correspond to Equation B-5, and these are the only two possibilities for
this term.

There are, however, two more forms of the power flow equation that might tempt one
to break them up into separate resistive and reactive power flow components incorrectly.
Consider Equation B-9. Let

h=0+m - (B-28)
Then

P = Al1+cos(20 — ¢; + )|+ Bsin(2e - ¢y + )
or

P = A[1-cos(20x - ¢;)]- Bsin(2ar - ¢;) . (B-29)

If one lets ¢, = ¢ — m, ¢ and ¢, differ by 27 and are, in effect, the same angle. The
same is essentially true for ¢,= 7 - ¢.

However, it follows that since Equation B-10 can be written as
P = A[1+cos(2wt — 0)]- Bsin(2ax - 6) ,
by setting
o047 - (B-30)
it can also be written as
P = A[1-cos(2et - 6;)]+ Bsin(2ax - 6;) - (B-31)

Thus, from the preceding, the circuit power flow equation can be written in the
separate forms

P = A1+ cos(2ax - ¢)] + Bsin(2ax - ¢) (B-32)
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P = A1+ cos(2wt - 6)]- Bsin(2at - 6) (B-33)

P = A[1-cos(2wt — ¢;)] - Bsin(2at — ¢ ) (B-34)

P = A[1-cos(2ax - 6;)]+ Bsin(2ax - 6;) (B-35)
where

¢1=¢+7F,91=6+7r,and9=¢+tan_1A22ABBz : (B-36)

All of these equations are correct for the total power flow, but only one (either B-9 or
B-10) can generally be broken into separate resistive and reactive power flows.
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Appendix C

THE RELATIONS BETWEEN THE FIELD COMPONENTS
IN STRAIGHT AND RETARDED TIME

Electromagnetic fields in the complex time harmonic form can be written as

‘

— I

E = E‘Oejwt = (_E—O, —jEO )ejax . ' (C-1)

From this the time domain (sinusoidal) physical forms can be found by taking the real
part of E (or I as the case may be).

However, antenna fields usually come in the form
E= B =B - 5o | 2
where

ty=t—rlc - (C-3)

Thus it is simpler and more logical to write the antenna fields, both time harmonic and
time domain, in terms of retarded time.

The relations between E, and g, are simply derived, starting with Equation C-1, i.é.,
E = EgeMehro® = ookl = Fol®. . (C-4)
Thus

Eoe* = | (C-5)

or
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— I

(Eo’ - jfo”)(coskr + jsinkr) = E, - JjE,
and from this

El’ = 1730' coskr+ Eo” sinkr

E” =E, coskr—E, sinkr .
Going the other way

E = B/ = Ee M el®™ = Fyel®
or

4

(B = 7B J(coskr - jsinkr) = By - jEq
and
E, =E, coskr—E," sinkr

E, =E, coskr+E sinkr

A like set of equations can be derived for the magnetic fields.
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Appendix D

EFFECT ON Q OF ADDING PURELY REACTIVE

ELEMENTS TO ANY CIRCUIT

Suppose there is a box (antenna) containing some combination of resistances,
capacitances, and inductances in any series, parallel, or series parallel arrangement. This

box has some known Q.

Suppose there is some other box containing only lossless capacitors and inductors in
any arrangement which is to be attached to the first box for some purpose, matching at

some frequency.

There are two ways to attach this box, i.e.,

X, 1=
vVooz,
and
X, Z,

The Q of Z, was originally determined by applying some voltage V across it and
driving some current I through it. Where black box X is joined to Z, in either the series
. or parallel sense, V and I might change if one drives the circuit with the same generator

although they must retain the same relative phase and amplitude since

V=2Z,I .
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The power flow into A is determined from
P - VI = ZAI2 = V2/ZA . (D‘2)

After the addition of circuit X,, in either series or parallel, the exact same V across
Z,, and hence the same I can be maintained by changes in the magnitude, phase and/or
characteristic impedance or admittance of the driving generator. For example consider a

worst case scenario where circuit X, approaches a short and is placed in parallel with
circuit Z,.

If the initial measurement is carried out as
Z,

V,cos ot 6,5 \% Z,

I—

then the same V and I, can be maintained as follows:

]—»

(V-1 Z,)cos @t C’b

23

- <
N
>

It is postulated that this is done. Now

4

°“w

(D-3)

where W, is the time average power loss and V is the peak stored reactive energy. W, is
unchanged by the addition of Z, if V and I are unchanged since Z, is lossless. The
reactive energy stored in Z, is also unchanged and is of the form

VA(f) = KAI + KAZ cos(2a)t - ¢A) . (D-4)
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There is a time independent part, K,,;, which must be positive, and a time dependent
part, K,, cos (2ot - ¢,). K,, can also be written as a positive number by adding or

subtracting T from ¢,. That is if ¢, =¢," + T, then
cos(2mt — ¢4 ) = cos(2at — ¢ — ) = —cos(2awr — P4) - (D-5)

It will be assumed that this operation is always carried out so that K,, is positive.

Because the stored energy can never be negative, one must have
Kp2 Ky - (D-6)

The Q of circuit A alone is thus

oK +Kp) (D-7)

Q= W,

When circuit Z, is added, whether it is in series or parallel, and the driving generator is
changed to maintain the same V and I across and through circuit A, it w111 also have

stored energy of the form
Vi(1) = Ky + Kqp cos(2at — ¢y) (D-8)
where

Ki12Kpp - (D-9)

Again, ¢, is chosen by adding 7 so that K, is positive.
The total time dependent stored energy is thus
U(t) = Uy(t) + Ux(r) = Ky + Ky cos(20t — §)
(D-10)

= KAI + Kll +KA2 COS(Z(Ut""q)A)"' K12 COS(ZW—%)
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By breaking D-10 into cos 2t and sin 2et, one finds that

Ki =Kz +Kqp > (D-11a)

K 4, cosdy + Kjp cosgy = K cos¢ » (D-11b)

K4osingy + Kjosing; = K, sing - | (D-11c)
It follows that

- St

Squaring Equation D-11b and D-11c and adding gives
K3 = K3p + K3 +2K Ky cos(94 = 61) (D-13)

Thus the total time dependent stored energy is

U($) = Kpy + Kyy +K3p + Kby + 2K o Ki2 cos(94 — 1) cos(2ar - ¢) - (D-14)

The peak energy stored is

U=Kg+Kp1+ \/ K32 + Kfs + 2K 40K1p cos(94 — ¢1) (D-15)

and the resultant Q is

2
w(KAl +K11 +'\/KA2 + Kl"zz +2KA2K12 COS(¢A - ¢1))
= WL _

(D-16)

Clearly
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020 - (D-17)

or the total Q is minimum in those cases where

| b= (D-18)
Then
Ks1+Ki1+ Ky — K
0= 2E&a L K 2) g5k, (D-19a)
8
or
_ (K a1+ Kj1 +Kjp — Ky»)

Q - s K12 > KAZ . (D-19b)
W, .

If K, = K}, as it does for a simple capacitor or inductor, Equation D-19a becomes

0= 2E&n+Kp) % (D-20)
WL

which is the case for the simple series RLC circuit below resonance as discussed in the
body of this report.

Note that if Equation D-19b happens to be the case and K,, = K,,, then

0= a)(K11+K12) >0, A ®-21)
WL
since
Ki12Kjp 2Ky =Ky - (D-22)

It has been shown that Q > Q, for any two terminal circuit when any lossless circuit is
added to it externally. One could add further circuits (lossless) in any fashion such as
below.
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It is readily seen that by treating X, and Z, in the dotted box as the original circuit,
adding X, in this case (in series), results in a new circuit with a Q equal to or greater than
that of the original circuit.

Thus given a circuit with some Q,, adding external lossless reactive elements to it in
any series, series-parallel, or parallel fashion results in a new circuit with a Q greater than
or equal to the original Q,.
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Appendix E
EQUIVALENT CURRENT AND VOLTAGE GENERATORS

Consider a voltage generator of characteristic impedance Z, feeding an impedance Z,
which may be any series, parallel, or series-parallel circuit.

Z

(s]

Vv

V =V, cos ot ’\) 5 7

L}
"

n
FIGURE E-1. Voltage Generator.
It is desired to replace the voltage generator with a current generator of characteristic

admittance Y,, Z is unchanged, driving the same impedance, Z, so that the current
through (and thus the voltage drop across

I s

g '
I =1 cos (ot+¢) @ l§ Y, ‘ Z

'
' ’

'n

FIGURE E-2. Current Generator.
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The two circuits are indistinguishable to the right of plane mm’ if

I'=1. (E-1)
Now let
Jjox
[=RYE_ . (E-2)
ZO +Z

Let both Z and Z, be complex, thus allowing for a complex characteristic impedance
although most texts treat Z, as real. Thus,

Voej wze-—j 6

I=Re - - (E-3)
JR+ R +(X + X,)

where

0=l X X0 (E-4)
R+ Ry

or

I= Vo co;(a)t -06) - (E-5)
J(R+ Ro)? + (X + Xo)
For the current generator case

L+I'=1I . (E-6)

From the circuit in Figure E-2, it is obvious that the voltage across Y, and Z must be the
same, i.e.,

IeZy =1 Z . (E-7)
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Thus Ic,[—z-,- + IJ = I;. where the subscript ¢ means complex notation. Thus

Zy
IO’ = IchO .
v ' Z+2Zy
‘1 LJet,jé
therefore I’ = Rez(—)—lgf—,e—
Z+ ZO
or
,0' 2o e X 1R, =38 6
I’ = Re—
N2 "2
\/(R+R0 ) +(X+X0 )
where
6 = tan—l MQ'_
R+Ry
Finally,

N Iolzo'lcos(a)t+¢—9'+tan"1(Xo,/R0’))
J(r+ &) +(x 4%,

I

Equating Equations E-11 and E-5, it can be seen that I" =T if

'y ZO=ZO,=— ?
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and

¢=—tan" Xy /Ry =—tan"! Xo/R, (E-14)

thus Figures E-3 and E-1 are indistinguishable as far as Z is concerned.

2 o

;o
IS=—Zi| cos(mt—tan"l-;&)@) §Y°=Z_o yA

FIGURE E-3. The Correct Current Generator to Deliver the Identical Current
to the Load as the Voltage Generator V,, cos @t.

Note that a complex characteristic impedance requires a phase shift between the
equivalent voltage and current generators.
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